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This note is a sequel to the preceding one with the same title published in this
Journal (13, 205-217 (1975». The contents of the first paper are assumed to be
known. References are in alphabetical order in each paper, but they, as well as
the sections, are numbered consecutively.

6. A PARTICULAR NONLINEAR SEMIGROUP ASSOCIATED WITH A CAUCHY

PROBLEM

As a first application of the theory presented in part 1, we treat an example
considered by Y. Konishi [18]. Motivated by a problem related to the burning
of gas in a rocket (see [27]), Konishi discussed the following initial value
problem (for a similar problem, see [32]):

ou(x, t) = 02U(X, t) _ F (OU(X, t»)
ot ox2 ox (-n :s:; X :s:; n, t > 0),

u(-n, t) = u(n, t),
ou(-n, t)

ox
ou(n, t)

ox (t > 0),
(6.1)

u(x, 0) = f(x) (-n :s:; X :s:; n),

where F(v) is a continuous function on [Rl such that F(O) = O. He proved
the existence of a unique solution of problem (6.1) by studying the nonlinear
semigroup associated with it. In this note we wish to characterize the approxi
mation behavior of this semigroup.

Let X be the space C2" of all 2n-periodic continuous functions f, normed
by lillie = sUP_">(",>(,, I f(x)l. We define a nonlinear operator A in C2". by

D(A) = Domain of A = {/;f,!',f" E C2".}, AI= -f"+F(J'), (6.2)

with F defined as above. In [18] it is shown that A is m-accretive, i.e., A is
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accretive and R(I + AA) = C2,,(A > 0). Hence (-A) generates a semigroup
T E Q(C21T) (which cannot be described explicitly) in the sense of Theorem 2.1.
Concerning the order of magnitude of II T(t)f - f!I (fE C2,,) with respect
to t, we may apply the results of part I to T, in particular those expressed
by the K-functional

K(t,j) = K(t,}; C2", D(A)):= inf (Ilf - g lie + til Ag lid·
gED(A)

For a further, more concrete characterization of the K-functional, we will
compare it with the second modulus of continuity w 2(t, f), which is given by

wlt,j) = sup I!fe - s) - 2f(-) + f(· + s)lle.
o<,<t

In the course of proof we also need the first modulus of continuity

Wl(t,j) = sup flf(' + s) - fOle.
0<!81<t

LEMMA 6.1. Under the above hypotheses there hold the following inequali
ties for f E C2" and°< t :<::;; 1, c and M being positive constants:

K(t 2,j) :<::;; !w2(t,f)

+t2 sup l I F(v)I;]V! :<::;;[w1(1,f)+ {w2(s,f)s-2ds]!, (6.3)

w2(t,f) :<::;; 4K(t2,j)

+ t2sup{1 F(v)i; I v i :<::;; 27T ]if]! + 27T(-2K(t2,j)}. (6.4)

In particular, ifF(v) = 0(1 v IT), r > 0, then

ifl F(v) I = I vir, r > 0, then

(6.6)

Proof IffE C2", °< t :<::;; 1, then

K(t 2,j) :<::;; Ilf - gt lie + t211 g; lie + (211 F(g/)lle,

where
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belongs to D(A). Since
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and

g;(x) = (-2[f(X + t) + f(x - t) - 2f(x)],

one has

and

(6.7)

(6.8)

Concerning the estimation of II F(g/)lle , note that

the latter inequality being known as Marchaud's inequality (see, e.g., [29]).
Since F is continuous on ~1, (6.9) implies

II F(g/)lle ~ sup II F(v)l; I v I ~ C [w1(l,f) + f wls,f) S-2 ds]l· (6.10)

Thus, combining (6.7), (6.8), and (6.10), inequality (6.3) follows. In the
special case that F(v) = 0(1 v IT) (6.10) implies

II F(g/)lle ~ cr M [wi l , f) + ( w2(s,f) S-2 dsf,
yielding (6.5). Concerning (6.4), one has for each g E D(A)

Now,

and

W2(t,j - g) ~ 4111 - g lie

(6.11)

(6.12)

W2(t, g) ~ (211 g" lie ~ t 2 11 Ag lie + t 2 11 F(g')lle . (6.13)

To estimate II F(g')lle , we use the inequality (see [18, Lemma 2]):

II g' f!e ~ 27T II g + Ag lie,
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which may be estimated from above by

2TT liflle + 2TTt-2[lIf - g lie + t 2 11 Ag lid

for 0 < t ~ 1. Thus one obtains

II F(g')lle ~ sup{1 F(v) I; ! v I ~ 2TT Illile + 2TTt-2[llf - g lie + t 211 Ag lid}. (6.14)

Combining (6.12) and (6.13) and noting (6.14), (6.11) yields

W2(t,j) ~ 4[111 - g lie + t 2
11 Ag lie]

+ t 2sup{1 F(v)l; I v I ~ 2TT 1!/!le + 2TTt-2[lil - g lie + t 2 if Ag lie]}.

Taking the infimum with respect to all g E D(A), (6.4) follows. To obtain
(6.5) if I F(v) I = 1vir, (6.14) is replaced by

F(g')lie :cS; II Ag lie· (6.15)

This inequality may be easily checked by the following consideration.
Since F and g' are continuous, there exists XoE [-TT, TT] such that 1 F(g'(x»1
has an absolute maximum at X o , i.e.,

II F(g')I!e = i F(g'(xo»1 = Ig'(xo)]r.

Without loss of generality we may assume I F(g'(xo»1 > 0 which is equivalent
with g'(xo) =F O. Then I F(g'(x» 1 has a derivative at X o which equals zero, i.e.

I :x ! F(g'(x» 1IN,o = r I g'(xo)lr-l I g"(xo)1 = o.

This implies g"(xo) = O. Thus

II F(g')lie = I -g"(xo) + F(g'(xo»1 ~ II _gil + F(g')lle,

establishing (6.15). The proof of the lemma is now complete.
If w 2(t,j) = 0(t20), 0 < ex ~ 1, then

C [w1(l, j) --l- (W2(S,j) S-2 dS] = 0(tIDinlo.2o-1J) (ex =F t)

= O(t-K) (ex = t),

any K, 0 < K < 00. This implies by (6.3):

K(t,j) = O(ta) + t sup[l F(v) I; I v I = 0(tmin<o,o-1/2)] (ex =F t)

K(t,f) = O(ta) + t sup[1 F(v) I; I v I = O(t-K)] (ex = t)·
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Hence, if i < 0: ~ 1, then K(t,f) = O(t"). If in addition F(v) = 0(1 v n
r > 0, (6.5) implies for all 0:, 0 < 0: ~ I:

K(t, f) = O(t" + tl+min (O,,,-1/2lT) (0: =1= !)
K(t,!) = 0(t1/ 2) (ex = !)
K(t,f) = O(t") (0 ::( r ::( 2, 0 < 0: ::( 1 or r > 2,

(r - 2)j[2(r - I)] ::( ex ~ I).

Conversely, if K(t,f) = O(t"), 0 < ex ::( I, then (6.4) yields

This estimate implies W2(t, f) = 0(t2) if ex = 1. For the special case in which
IF(v) I = I v IT (r > 0), (6.6) yields w 2(t,f) = 0(t2") for all ex, 0 < 0: ::( 1.
Combining these results with those of Theorem 4.3, we obtain the following
theorems which, for simplicity, are only formulated for the case q = 00,

the counterpart for I ::( q < 00 then being obvious. Here Lip2 f3 (0 < f3 ~ 2)
denotes the class of functions f E C27r for which sUPO<t<l t-fJW2(t, f) is finite.

THEOREM 6.2. Let A be defined by (6.2) and let T = {T(t); t ~ O} be the
semigroup generated by (-A).

(a) The following assertions are equivalent for an f E C21T :

(i) II T(t)f - file = O(t); (ii) fE Lip2 2; (iii) /'1' are absolutely con
tinuous and periodic and1" E L~1T •

(b) IffE Lip2 2ex (! < 0: < I), then II T(t)f - file = 0(1").

Part (a) of the theorem describes the optimal approximation behavior of T.
For the equivalence of (ii) and (iii) see [6, p. 129]. Part (b) is a so-called
direct theorem for the nonoptimal case, at least if ! < 0: < I. These results
hold for an arbitrary continuous function F(v) with F(O) = O. Moreover,
if F(v) is specialized as a power function, then even the converse holds in case
of nonoptimal approximation.

THEOREM 6.3. Let T = {T(t); t ~ O} be the semigroup generated by (-A)
defined in (6.2) with IF(v) I = I v IT, r > O.

(a) !f0::( r ::( 2, then for fE C21T

II T(t)f - file = O(t")
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(b) Ifr > 2, then for fE CZ"

11 T(t)f - file = O(p) (
r- 2 )

2(r _ 1) :s; ex :s; 1 <dfE Lipz(2ex).

For 0 :s; r :s; 2 this theorem is an equivalence theorem for all values of ex
in question, while for r > 2 the region of admissible ex depends on r, however,
always including the range t :s; ex :s; 1.

It is well known (see [6, p. 127]) that the classes Lipz(2ex) (0 < ex :s; 1),
which are linear, completely characterize the approximation behavior of
the linear semigroup W = {W(t); t ~ O} which is associated with the periodic
singular integral of Weierstrass

[W(t)f](x) = 2~ (" f(u) Bix - u; t) du (t > 0,/E Cz,,),

Bix, t) = L::~-co e-k2teikX being Jacobi's theta-function. Thus, in the cases
described by Theorem 6.2(a) and 6.3 the approximation behavior of T
coincides with that of the semigroup W. In this context see also [25], [30],
and [26].

7. CONCLUDING REMARKS

As a further application one might discuss the semigroup related to the
Cauchy problem

8u(x, t) = A ( (. "»ot t.Jrp u .X, t

u(x, 0) = f(x)

(7.1)

which is treated in the literature under various hypotheses upon the function
rp: 1R1 ---+ 1R1 and in various function spaces X (see, e.g., [33], [28], [23], [24]).
Crandall [11] considered the semigroup associated with (7.1) in the space
U(Q) in case rp is a continuous strictly monotone increasing function on 1R1

with rp(O) = 0 and Q a bounded region of IRn• Konishi [31] studied the one
dimensional problem on the circle in case rp(v) = vm (m > 1), representing
a mathematical model for flow through a homogeneous porous medium.
The problem now is the approximation theoretical behavior of the non
linear semigroup associated with (7.1). The general theory of part I applies,
but the details will not be carried out here.

Finally, let us recall that in linear semigroup theory the approximation
behavior as treated in this paper is usually described in a topological frame-
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work. This is due to the fact that the approximation classes introduced in
Definition 4.1 may be supplied with norms by the aid of the functional values
if>""i") defining them. Hence inequalities between these norms, e.g., (4.2)
and (4.3), may be expressed simply as embeddings of the corresponding
spaces. Now in the nonlinear situation this interpretation in the setting of
normed spaces is of course no longer possible, though the inequalities per
se remain valid.

One might try to equip the approximation classes in question with a
(nonlinear) metric topology, e.g., the set [A]~,q with the metric

p""if, g) := Ilf - gil + if>""iil T(t)f - f - T(t)g + g:O

But to obtain the topological embeddings wanted for our spaces one would
have to restrict the notion of accretiveness by a condition additional to (2.5).
This condition would have to be checked in the examples, which may be
quite a problem.
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